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Background: Radiomics models trained on data from one center typically show a decline of performance when applied to
data from external centers, hindering their introduction into large-scale clinical practice. Current expert recommendations
suggest to use only reproducible radiomics features isolated by multiscanner test–retest experiments, which might help to
overcome the problem of limited generalizability to external data.
Purpose: To evaluate the influence of using only a subset of robust radiomics features, defined in a prior in vivo multi-
MRI-scanner test–retest-study, on the performance and generalizability of radiomics models.
Study Type: Retrospective.
Population: Patients with monoclonal plasma cell disorders. Training set (117 MRIs from center 1); internal test set (42 MRIs
from center 1); external test set (143 MRIs from center 2–8).
Field Strength/Sequence: 1.5T and 3.0T; T1-weighted turbo spin echo.
Assessment: The task for the radiomics models was to predict plasma cell infiltration, determined by bone marrow biopsy,
noninvasively from MRI. Radiomics machine learning models, including linear regressor, support vector regressor (SVR),
and random forest regressor (RFR), were trained on data from center 1, using either all radiomics features, or using only
reproducible radiomics features. Models were tested on an internal (center 1) and a multicentric external data set (center
2–8).
Statistical Tests: Pearson correlation coefficient r and mean absolute error (MAE) between predicted and actual
plasma cell infiltration. Fisher’s z-transformation, Wilcoxon signed-rank test, Wilcoxon rank-sum test; significance
level P < 0.05.
Results: When using only reproducible features compared with all features, the performance of the SVR on the external
test set significantly improved (r = 0.43 vs. r = 0.18 and MAE = 22.6 vs. MAE = 28.2). For the RFR, the performance on
the external test set deteriorated when using only reproducible instead of all radiomics features (r = 0.33 vs. r = 0.44,
P = 0.29 and MAE = 21.9 vs. MAE = 20.5, P = 0.10).
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Conclusion: Using only reproducible radiomics features improves the external performance of some, but not all machine
learning models, and did not automatically lead to an improvement of the external performance of the overall best radi-
omics model.
Level of Evidence: 3.
Technical Efficacy: Stage 2.

J. MAGN. RESON. IMAGING 2025;61:676–686.

Machine learning is increasingly used for medical image
analysis. A very common approach is radiomics, in

which a large amount of predefined quantitative features are
extracted from the target structure, and subsequent ML
models are trained to predict respective target variables as
tumor tissue characteristics, genetics, or outcome.1,2 An
extensive number of Radiomics studies can be found on
PubMed to date.3 Despite this seemly great success of radi-
omics in research, there is basically no translation of
radiomics into clinical practice to date. It can be assumed that
one major reason for this is the limited performance of most
models when applied to test data from other centers, in the
following referred to as external performance. It has been
demonstrated that radiomics features are highly sensitive to
image acquisition parameters, both for CT4–8 and MRI,9–13

explaining one major factor contributing to the decline of
performance of radiomics algorithms when applied to external
data. To overcome this problem, one approach proposed by
several expert recommendations14–19 would be to isolate a
subset of radiomics features which are (at least relatively)
robust against different image acquisition settings. By includ-
ing only such reproducible radiomics features during the
model building process, it could be expected that
the resulting model would perform more robustly across cen-
ters with differences in image acquisition. However, per-
forming prospective in vivo multi-MRI-scanner test–retest
studies is challenging due to the necessity of patient recruit-
ment, cost of MRI scan time, and scheduling of several mea-
surements for one patient in a reasonable timeframe.
Consequently, the number of prospective in vivo multi-
MRI-scanner test–retest studies, which have investigated radi-
omics feature stability is very limited, including brain20,21

and bone marrow.9 Other methods to define reproducible
radiomics features in absence of in vivo multi-MRI-scanner
test–retest measurements include using a simple test–retest-
experiment at the same MRI scanner, multiple delineation
experiments or feature stability analysis based on image per-
turbation.22 However, the resulting features from such experi-
ments are not necessarily reproducible across different MRI
scanners for multicentric application.

The purpose of this study was to investigate how using
only reproducible radiomics features, selected by a prior pro-
spective, in vivo multi-MRI-scanner test–retest-study, would
influence the performance and generalizability of radiomics
machine learning models on external, multicentric data sets.

Materials and Methods
Study Design
This was a retrospective exploratory study approved by the local IRB
with waiver of informed consent (S-537/2020). Different feature
selection approaches, including an approach based on prior knowl-
edge of radiomics feature reproducibility, as well as approaches based
on calculative feature reduction strategies, were applied prior to
training of the prediction model. The machine learning models for
prediction of the target variable were trained on training data from
center 1 (n = 117) for each of the different radiomics feature sets.
The performance of the resulting models was evaluated first on an
independent test set from center 1 (n = 42) and second on a hetero-
geneous external test set from seven different centers (n = 143). The
absolute performance of the models on the internal and external test
set and the generalizability of the models, defined as the relative dif-
ference between the performance on the internal and external test
sets, were evaluated. A detailed overview of the study design is pro-
vided in Fig. 1. Explanatory example cases for models with different
types of internal performance, external performance, and generaliz-
ability are displayed in Fig. 2.

Prediction Task and Data Sets
The task for the radiomics models was to predict bone marrow
plasma cell infiltration from pelvic bone marrow segmentations on
T1-weighted turbo spin echo images from whole-body MRI in
patients with untreated newly diagnosed multiple myeloma or the
precursor stages monoclonal gammopathy of undetermined signifi-
cance and smoldering multiple myeloma, as reported elsewhere.23

Imaging data, segmentations, and biopsy results were reused from
another study,23 with the exception that former dataset IV from cen-
ter 1 was excluded, as it contained older imaging data with lower
image quality.23 Data were acquired between 2015 and 2021.
Details on inclusion and exclusion criteria have been published else-
where.23 To summarize the main inclusion criteria, all patients had a
monoclonal plasma cell disorder, had undergone whole-body MRI
including a coronal T1-tse sequence covering the pelvis, and had
received bone marrow biopsy, both prior to start of systemic treat-
ment for multiple myeloma. Images with major artifacts or large
implants in the pelvis were excluded. 302 MRIs with corresponding
bone marrow biopsy results from a total of 300 patients (mean age,
60 years �10; 183 men) from eight centers were included. Table 1
reports descriptive information on the training set and the internal
and external test set. The flow-charts reporting inclusion and exclu-
sion for this dataset have been reported elsewhere.23 The external
test set comprises data from eight different MRI scanners (seven dif-
ferent MRI models) from three vendors, however only three were
acquired with 3T. Additional information on the data sets and on
subject overlaps with other publications9,23–28 are provided in the
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FIGURE 1: Study Design. The purpose of this study was to evaluate the influence of different feature selection methods on the
performance and generalizability of radiomics models. (a) shows the different feature selection methods which were applied. (b)
reports on the process of establishing the radiomics models. Especially, different subsets of radiomics features were applied, and
different machine learning models were used for prediction of the target variable for each feature selection, resulting in a total of
15 different combinations of feature sets and machine learning models. (c) Shows an overview of the evaluation of performance and
generalizability of those models. All models were applied on the internal test set and on the external test set, and correlation
between predicted plasma cell infiltration by the model and actual plasma cell infiltration from biopsy and MAE between predicted
and actual plasma cell infiltration, were calculated to quantify the performance of the prediction. The generalizability of each model
was defined as the relative difference between the performance of the model on the internal test set and the performance on the
external test set. ICC = intraclass correlation coefficient; LASSO = least absolute shrinkage and selection operator;
MRMR = minimum redundancy–maximum relevance; r = Pearson correlation coefficient between predicted and actual plasma cell
infiltration; MAE = mean absolute error between predicted and actual plasma cell infiltration; LR = linear regressor; SVR = support
vector regressor; RFR = random forest regressor.
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Data S1 in the Supplemental Material. The data reused in this study
in part originated from the prospective registered trials
GMMG-HD7 (EudraCT: 2017–004768-37) and Transregio-79
(ClinicalTrials.gov: NCT01374412).

Imaging, Segmentation, and Radiomics Feature
Calculation
Pre-existing annotated data from a prior study was reused, and
details on MRI image acquisition and segmentation are provided
elsewhere.23 In summary, pelvic bone marrow of both hip bones was
segmented on T1-weighted turbo spin echo whole-body MRI
images. Images were normalized to the signal intensity of the
piriformis muscle, as an earlier study had demonstrated that using
this normalization improves the reproducibility of the majority of
radiomics features in this setting.9 Images were geometrically res-
ampled to a common spatial resolution (in-plane resolution
1.3 x 1.3 mm2, slice thickness 5 mm, 10% distance factor).23

258 radiomics features were extracted using the IBSI-conform29 and

validated MITK phenotyping30 toolbox (version 2022.4, German
Cancer Research Center, Heidelberg, Germany).

Clinical Data
All included patients had undergone routine bone marrow biopsy at
the posterior iliac crest without image guidance. The percentage of
plasma cell infiltration in the bone marrow was then obtained from
the specimen either histologically, cytologically or both. In line with
recommendations from the International Myeloma Working Group,
in case of disparity between both values the higher value was used.31

Feature Selection Methods
Different feature selection methods were applied prior to training of
the ML models. The simplest approach is to use all calculated fea-
tures. An alternative approach proposed by several expert
recommendations14–19 is to isolate a subset of radiomics features
which are (at least relatively) robust against different image acquisi-
tion settings. By including only such reproducible radiomics features

FIGURE 2: Differentiating internal performance, external performance, and generalizability: explanatory scenarios. (a) The model
demonstrates a high performance on the internal test data, indicating a promising model. However, when applied to external data,
the model does not generalize well and the external performance is low, representing a classical scenario often encountered in
radiomics. (b) The model demonstrates a high performance on the internal test data and maintains a similarly high performance on
external data, corresponding to a high generalizability, as it would be desired for large-scale, multicentric clinical application of
radiomics models. (c) The model demonstrates a low performance on both the internal and external test set and therefore has no
clinical utility, neither at the center where it was established nor elsewhere. (d, e) When tested on the external test data, both
models in d and e show the same moderate performance. In absence of an internal test set, the models would therefore seem
similar, despite their striking differences regarding internal performance and generalizability. A study design with both an internal
and an external test set enables to differentiate whether a limited external performance results from a low generalizability (d), or
whether it stems from a generally low/moderate performance on the internal test set (e), with or without an additional problem
regarding generalizability. (f) Even though a model shows an excellent generalizability (blue model), its external performance might
still be outperformed on external test data by second model with only moderate generalizability (red model), if the second model
had shown a markedly higher internal performance.
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during the model building process, in theory it would be expected
that the resulting model would perform (more) robust across centers
with differences in image acquisition.

The radiomics quality score14 suggests to perform phantom
studies on different scanners (criterion 3), and to perform test–retest
scans at the same scanner (criterion 4), and then perform feature
reduction based on the observed feature robustness in both afore-
mentioned settings (criterion 5). Based on this recommendation, our
group had performed a prospective in-vivo multi-MRI-scanner test–
retest study, in which patients with monoclonal plasma cell disorders
had undergone a simple test retest at the same MRI scanner with
the same MRI protocol after patient repositing (simple test–retest),
as well as additional re-scans with a second MRI protocol at the
same 1.5T MRI scanner, a rescan at a second MRI scanner with
the same field strength from the same vendor, and a rescan at
another MRI scanner with 3.0T from the same vendor. Based on
these measurements, a subset of 31 reproducible radiomics features
had been identified, which had shown an intraclass correlation coef-
ficient (ICC) ≥0.8 in all reproducibility experiments.9 Additionally,
to mimic a scenario in which a simple test–retest experiment is per-
formed but data on Multi-MRI-scanner reproducibility is absent, we
performed an experiment using only the 75 radiomics features which
had shown an ≥0.8 in the simple test–retest experiment in the earlier
study.9

For comparison, we included two other, merely calculative fea-
ture selection methods. We chose least absolute shrinkage and selec-
tion operator (LASSO) and minimum redundancy–maximum

relevance (MRMR) algorithms, as based on our observations these
are frequently used in radiomics studies in the literature and have
been demonstrated to be good choices by a large earlier study which
had systematically compared 29 different calculative feature selection
algorithms across 10 datasets.32 To eliminate a potential source of
bias caused by different numbers of features between the different
subsets, we applied LASSO and MRMR to also select 31 features.
Further details on feature selection and a list of all feature subsets are
included in the Supplemental Material.

Radiomics Machine Learning Models for Prediction
We considered the possibility that the performance of the radiomics
model might depend on the ML model used for the prediction task.
We further considered that also the generalizability, and the influ-
ence that the respective features selection has on the generalizability,
might depend on the ML model used for the prediction task. There-
fore, we decided to include three different ML models instead of
only one ML model in this study. These comprised linear regressor
(LR), support vector regressor (SVR), and random forest regressor
(RFR). Further details on training of the machine learning algo-
rithms are reported in the Supplemental Material.

Statistics
Pearson correlation coefficient r between predicted and actual plasma
cell infiltration and mean absolute error (MAE) between predicted
and actual plasma cell infiltration, were used as metrics to quantify
the internal and external performance of the prediction algorithms.

TABLE 1. Description of Study Cohorts

Data Set
Training Set
(Center 1)

Internal Test Set
(Center 1)

External Test Set
(Center 2–8)

n wb-MRIs (n patients) 117 (115) 42 (42) 143 (143)

Patient characteristic

Male sex (n, %) 68 (59%) 24 (57%) 91 (64%)

Age in yearsa 60 � 9 60 � 10 60 � 11

Female subgroup 57 � 10 63 � 11 61 � 10

Male subgroup 61 � 8 57 � 9 59 � 11

Disease stage

MGUS and SMM 47 18 21

NDMM 68 24 122

Tumor load surrogates

Plasma cell infiltration in %b 20 (14–40) 20 (16–32) 35 (15–60)

M-Protein in g/Lb 23 (13–37; 14) 23 (13–38; 6) 31 (14–41)

Descriptive information is reported for each data set.
% = percentage of this cohort; wb-MRI = whole-body magnetic resonance imaging; MGUS = monoclonal gammopathy of unknown
significance; SMM = smoldering multiple myeloma; NDMM = newly diagnosed multiple myeloma.
aMean � standard deviation.
bMedian (interquartile range).
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The relative change of both r (Δr) and MAE (ΔMAE) between the
performance on the internal and external test set were calculated as
indicators for generalizability of the prediction algorithm from inter-
nal to external application. To test for differences in r between dif-
ferent models on the same data set or using the same model on
different data sets, Fisher’s z-Transformation was used.33 To test for
differences in MAE between different ML models on the same data
set or the same ML models using different feature subsets on the
same data set, the Wilcoxon signed-rank test was used. To test for
differences in MAE using the same model on different data sets, the
Wilcoxon rank-sum test was used. P-values below 0.05 were consid-
ered statistically significant. When the term significant is used in this
manuscript, this refers to statistical significance. Python (version
3.11.6; https://www.python.org/) with scipy (version 1.12.0; https://
scipy.org) were used for the statistical analysis.

Results
Comparison of Feature Subsets Selected by the
Different Feature Selection Approaches
When comparing the different feature sets selected by the
respective methods (Tables S2–S5 in the Supplemental Mate-
rial), it can be observed that a markedly higher proportion of
texture features was selected by the calculative feature selec-
tion approaches LASSO (19 of 31 features, 61%) and
MRMR (22 of 31 features, 71%) than by the reproducibility
experiment (6 of 31 features, 19%) or by the repeatability
experiment (21 of 75 features, 28%).

Influence of Feature Selection on the Performance
of Radiomics Models on the Internal Test Set
In the first experiment, the influence of the different feature
selection approaches on the performance of the radiomics
models on the internal test set was investigated, compared
with a standard setting in which all radiomics features were
used. Results are visualized in the first columns of Figs. 3–5
for the LR, SVR, and RFR model, respectively. We observed
that the performance on the internal data strongly varied
across the different ML models: when using all features,
r ranged from 0.44 for the LR model to 0.73 for the RFR
model, and MAE varied from a maximum of 138.0 for the
LR model to a minimum of 13.9 for the RFR model.

Using only reproducible features instead of all features
resulted for the RFR in a significant decrease of the internal
performance, with a decrease in r (0.43 vs. 0.73) and an
increase in MAE (17.5 vs. 13.9). The LR model benefited
from using only reproducible features compared with all fea-
tures, with an increase in r (0.50 vs. 0.44; P = 0.77) and a
significant decline of MAE (16.6 vs. 138.0). For SVR, there
was no marked influence of using only reproducible features
compared with using all features on the internal performance
(r of 0.63 vs. 0.65 (P = 0.89) and MAE of 14.4
vs. 14.3 (P = 0.59)).

Influence of Feature Selection on External
Performance and Generalizability of Radiomics
Models
Performance and generalizability metrics for all combinations
of ML models and feature subsets are displayed in Fig. 3 for
LR, in Fig. 4 for SVR, and in Fig. 5 for RFR, respectively.

As first general observation, for all models using all fea-
tures, the performance on the external test set was signifi-
cantly worse than their performance on the internal test set,
with both a significantly lower r and a significantly higher
MAE. As second general observation, the external perfor-
mance strongly depended on the ML model: When, for
example, models used all features, for the external test set
r ranged from �0.06 for the LR model to 0.44 for the RFR
Model, and MAE ranged from a maximum of 1945.8 for the
LR model to a minimum of 20.5 for the RFR Model.

For LR and SVR, the external performance of the
model using only reproducible features was superior com-
pared with the model using all features: LR showed a mark-
edly higher r (0.14 vs. �0.06; P = 0.08) and a significantly
lower MAE (25.2 vs. 1946.8), and SVR showed
significantly higher r (0.43 vs. 0.18) and significantly lower
MAE (22.6 vs. 28.2) on the external test set. For RFR, how-
ever, on the external test set the model using only reproduc-
ible features performed inferior compared with the RFR using
all features, with r of 0.33 compared with 0.44 (P = 0.29)
and MAE of 21.9 compared with 20.5 (P = 0.10).

When using only reproducible features compared with all
features, for all models the generalizability of the model using
only reproducible features was better than the generalizability of
the model using all features, with a less negative Δr (LR: �72%
vs. �115%, SVR: �32% vs. �71%, RFR: �22% vs. �40%),
and a smaller ΔMAE (LR: +52% vs. +1310%, SVR: +58%
vs. +97%, RFR: +25% vs. +48%).

When using only repeatable features instead of all features,
the external performance of the SVR model slightly improved
with higher r (0.34 vs. 0.18, P = 0.16) and lower MAE (27.1
vs. 28.2, P = 0.66), while not reaching the external performance
of the SVR using only reproducible features with a lower r (0.34
vs. 0.43, P = 0.38), and a significantly higher MAE (27.1
vs. 22.6). For the RFR, using only repeatable features instead of
all features resulted in a lower external performance with lower
r (0.36 vs. 0.44, P = 0.41) and significantly higher MAE (21.7
vs. 20.5), which was similar to the external performance of the
RFR using only reproducible features (r of 0.36 vs. 0.33,
P = 0.81, and MAE of 21.7 vs. 21.9, P = 0.62).

When comparing the external performance across all
combinations of ML models and feature selection methods, a
SVR using only reproducible features (r = 0.43 and
MAE = 22.6), and a RFR using either all features (r = 0.44,
MAE = 20.5) or a LASSO (r = 0.42, MAE = 20.3) or
MRMR (r = 0.41, MAE = 20.7) as feature selection
methods revealed the best external performances.
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Discussion
Despite the vast number of publications in the field of radi-
omics and despite the apparent success of radiomics models
in many single-center studies continuously published, a

decline in performance of radiomics models when applied to
external data still prevents radiomics from entering large-scale
clinical application. Several guidelines recommend to isolate
robust radiomics features from repeatability and reproducibility

FIGURE 3: Performance and generalizability of LR models based on different feature subsets. LR models based on five different
feature subsets, resulting from the five different feature selection approaches (all features, reproducible features, repeatable
features, features selected by LASSO, and features selected by MRMR), are compared regarding performance and generalizability.
The top row demonstrates the Pearson correlation coefficient r between predicted and actual plasma cell infiltration for each model-
feature-selection-combination, where a higher r indicates a better performance. The second row shows the relative decline in r (Δr in
%) between the respective model-feature-combination on the internal and external test set, where a less negative r represents a
better generalizability. The third row demonstrates the MAE between predicted and actual plasma cell infiltration for each model-
feature-selection-combination, where a lower MAE indicates a better performance. The bottom row shows the relative increase in
MAE (ΔMAE in %) between the respective model-feature-combination on the internal and external test set, where a lower ΔMAE
represents a better generalizability. Bars indicate 95% confidence intervals. LR = linear regressor; r = Pearson correlation coefficient
between predicted and actual plasma cell infiltration; MAE = mean absolute error between predicted and actual plasma cell
infiltration; LASSO = least absolute shrinkage and selection operator; MRMR = minimum redundancy–maximum relevance.
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studies for feature selection,14–19 aiming to improve model per-
formance and external generalizability. The current study investi-
gated the influence of a feature selection based on prior in vivo
Multi-MRI-Scanner reproducibility experiments9 on the perfor-
mance and generalizability of radiomics models on an external,
multicentric test set. The results demonstrate that the perfor-
mance on external, multicentric test data improves for some, but
not all machine learning models when using only reproducible
features instead of all features. While for LR and SVR the exter-
nal performance improved, the external performance of the RFR
even somewhat declined when using only reproducible features

instead of using all features. Across all model-feature-selection-
combinations, a RFR using all features showed the best external
performance, which was not outperformed by any other combi-
nation of ML model and feature selection.

For a radiomics model to be of value for real-world,
multicentric application, both high internal performance and
high generalizability are required. Our study design, using
both an internal and an external test set, enabled us to sepa-
rate whether a limited external performance explicitly resulted
from a low generalizability, or whether it resulted from a gen-
erally low/moderate performance on the internal test set, with

FIGURE 4: Performance and generalizability of SVR models based on different feature subsets. SVR models based on five different
feature subsets, resulting from the five different feature selection approaches (all features, reproducible features, repeatable
features, features selected by LASSO, and features selected by MRMR) are compared regarding performance and generalizability.
For explanation and abbreviations please see legend of Figure 3. SVR = support vector regressor.
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or without an additional problem in generalizability. When
evaluating the influence of the different feature subsets on
generalizability, the results demonstrate that the generalizabil-
ity for all models benefited from using only reproducible fea-
tures compared with using all features. For LR and SVR,
using only reproducible features instead of all features resulted
in a superior external performance. On the other hand, while
the RFR using only reproducible features also showed a better
generalizability compared with the RFR using all features, this
did not translate into a better external performance of the
RFR using reproducible features. The RFR using only

reproducible features had shown a markedly worse perfor-
mance on the internal data compared with the RFR using all
features, and the benefit in generalizability was outweighed
by this effect, resulting in an inferior external performance of
the RFR using reproducible features compared with the RFR
using all features, despite the superior generalizability. In gen-
eral, the results demonstrate that the performance of the radi-
omics models strongly depend on the ML model used for the
prediction task, and that additionally the influence which
the feature selection has on generalizability of the model also
strongly varies across different ML models.

FIGURE 5: Performance and generalizability of RFR models based on different feature subsets. RFR models based on five different
feature subsets, resulting from the five different feature selection approaches (all features, reproducible features, repeatable
features, features selected by LASSO, and features selected by MRMR) are compared regarding performance and generalizability.
For explanation and abbreviations please see legend of Figure 3. RFR = random forest regressor.
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In summary, compared over all model-feature-selection-
combinations, a RFR using all features showed the best exter-
nal performance, which was not outperformed by any other
combination of ML model and feature selection. So, against
our own expectations and against what might be expected
based on several current recommendations on radiomics, an
elaborate in vivo multi-MRI-scanner test–retest-study for iso-
lation of reproducible radiomics features did not automati-
cally lead to an improvement of the external performance of
the overall best prediction model in the present use case
of predicting bone marrow plasma cell infiltration noninva-
sively from MRI.

While the current study used a subgroup of reproduc-
ible features defined in a prior study using ICC as statistical
metric and a cutoff of ≥0.8,9 it must be stated that there is
no unique definition on how to define the subgroup of “sta-
ble” radiomics features: different statistical metrics as ICC,
concordance correlation coefficient or coefficient of variation
and different cutoff-values have been used in respective prior
studies.4–13 Therefore, subsequent studies should evaluate
whether different statistical metrics in combination with dif-
ferent cutoff values to select the subgroup of stable radiomics
features, or more complex statistical methods integrating fea-
ture informativeness and feature stability, might lead to an
improvement of the external performance of the RFR model.
Further studies should also investigate whether radiomics
models based on other MRI sequences or on a multimodal
approach can improve the performance on external data.

It seems noteworthy that while the feature subsets
selected by LASSO and MRMR include very many texture
features, which had not shown to be reproducible across MRI
scanners in the earlier study, the external performance of the
RFR when using these features is even slightly better com-
pared with the performance when using only reproducible
features. This indicates that features that are not well repro-
ducible across scanners nevertheless contribute markedly to
the performance of the resulting model, indicating that rather
a positive trade-off of information content to stability than
stability of a feature alone is the important characteristic of a
radiomics feature to contribute to a radiomics model, which
performs (at least relatively) well on external data.

Limitations
The retrospective study design is a limitation of this study.
While the external test set comprised data from eight different
MRI scanners (seven different MRI models) from three ven-
dors, it is a limitation of our study that only very few MRIs
in the test set have been acquired with 3T, even though the
feature reproducibility experiments had included a 3T scan-
ner. While the current study was focused on a regression task,
further studies should investigate whether using only repro-
ducible features can improve the external performance of radi-
omics models for a classification task. As it has been

demonstrated that radiomic feature stability can vary between
different tumor entities34 and must be expected to dependent
on imaging modality, further studies across different tumor
entities and modalities will be necessary to gain more compre-
hensive evidence on this topic.

Conclusion
This study provides evidence on the influence of feature selec-
tion based on in-vivo repeatability and reproducibility experi-
ments on the generalizability and performance of radiomics
models on external, multicentric data sets. Using only repro-
ducible radiomics features improved the external performance
of some, but not all machine learning models, and did not
automatically lead to an improvement of the external perfor-
mance of the overall best radiomics model. This study high-
lights the complexity of improving generalizability of
radiomics models for multicentric application even when
information on Multi-MRI-Scanner reproducibility of fea-
tures is available.
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